
 

Operating Systems

 

1

 

INFORMATIK ¥ INFORMATIQUE 2/1999

 

Open Source Ð A New Software Development Paradigm

 

Bela Ban

 

Open Source (OS) is a new paradigm for software development, exempliÞed by (but not restricted to) the
Linux development community. Simply put, it is based on the notion of giving software (including sources)
away for free, and making money on services, customising and maintenance. The departure from a closed to
an open development model requires explanation, especially with respect to the advantages of OS for users,
and how suppliers of OS can beneÞt from OS in terms of revenue. This article gives an overview of OS and
tries to destroy myths often heard in conjunction with free or open software. There are indications that OS
is able to establish itself as a valid and working business model for software creation, in addition to the exist-
ing ones.

 

DeÞnition

 

Free software has existed for a long time, rooted in the
academic community. The 

 

Free Software Foundation

 

 [FSF 99],
founded by Richard Stallman, is commonly seen as the mid-
wife and leader of free software. Newer projects such as Linux
or Apache, have joined the effort only recently.

As some proponents of free software felt more and more that
their model would be able to achieve more than just providing
free software to the (mainly) academic and research communi-
ty, a few advocates of free software founded the 

 

Open Source
project

 

 [Opensource]. Its major purpose is the dissemination of
free software, mostly targeted at the penetration of the business
world (or Òworld dominationÓ, as Linus Torvalds once jokingly
called it). The term 

 

free

 

 had a too revolutionary and anti-com-
mercial taste, therefore 

 

open

 

 was chosen instead. Additionally,
the OS license is less restrictive than some of the free software
community, and allows for example to make money with free
software.

Eric Raymond, the main proponent and co-founder of the
Open Source project, is generally credited with establishing the
movement of OS through his seminal paper Ò

 

The Cathedral
and the Bazaar

 

Ó [Raymond 98a].
Open Source software, as its name implies, includes source

and binaries in a software distribution, that means, the source
code must be included in a distribution, or there must be a way
to obtain it easily (e.g. downloading from a web page). Its
license requires vendors to provide the software for free. As
they therefore cannot make money on the software itself, they

need other incentives to provide OS software. Some of the busi-
ness models underlying OS are discussed later in this article.

An example of OS vendors are the various Linux distributors,
who package the kernel plus a suite of tools and applications
together with printed book-form documentation (and an
optional support contract) for a fee. However, conforming to
the OS spirit, the same material is also provided in electronic
form on their Web sites for users to download. The added value
of their service is printed documentation, a pre-conÞgured set
of applications and the beneÞt of avoiding to download (poten-
tially large) distributions from the web.

 

Characteristics

 

The characteristics of OS are described in [Raymond
98a]. I shall brießy summarize the most important ones.

 

ÒProvided the development coordinator has a medium at least 
as good as the Internet, and known how to lead without 
coercion, many heads are inevitably better than oneÓ. 

 

This contradicts BrooksÕs Law which states that Òadding
developers to a late project makes it laterÓ [Brooks]. However,
the Linux model has shown that by carefully dividing the
development efforts of literally hundreds of developers located
all over the world and connected via the Internet, it is indeed
possible to develop such a system, without getting bogged
down by complexity and communication overhead. A Òbenev-
olent dictatorÓ (Torvalds) is 

 

primus inter pares

 

 among a small
set of co-developers, who are responsible for a speciÞc subsys-
tem of Linux, who in turn accept changes from a larger number
of developers. Such a hierarchy avoids that the dictator himself
becomes a bottleneck. Another argument is that the culture of
OS projects (bazaar) is distinctively different from closed
projects (cathedral); developers in bazaars are less ÒterritorialÓ
about their code and more willing to reuse code written by
others. It would go too far to describe the mind-set and culture
of OS developers in detail here, but an excellent paper into the
social forces governing OS projects is given in [Raymond 98b].

1

Bela Ban is a post-doc researcher in the CS department at Cornell
University where he is currently working on a toolkit for reliable
distributed group communication (http://www.cs.cornell. edu:/home/
bba/javagroups.html). His interests include OO in distributed com-
puting, meta object protocols, components and triathlon.

2



 

Operating Systems

 

INFORMATIK ¥ INFORMATIQUE 2/1999

 

2

 

ÒGood programmers know what to write. 
Great ones know what to rewrite (and reuse)Ó

 

This suggests that the amount of reuse in OS projects is
higher than in closed projects due to the fact that there are no
secrets, product fees, non-disclosure agreements and other
types of legal bindings typically found in cathedral projects
which prevent large scale reuse from occurring. Having source
code available is a very good way of customizing a software,
and avoids the need to re-invent the wheel in case the binary
release of a software cannot be adapted to oneÕs needs.

 

ÒRelease early. Release often. And listen to your customersÓ

 

Contrary to cathedral projects, bazaar projects are often
released at a very early stage, giving potential co-developers
the chance to play with the code, possibly Þnding bugs and
sending bug Þxes back to the author. An OS project always
looks at its users at least as testers and perhaps even as potential
future co-developers. The invitation to report bugs and even
send corrections with a bug report to an OS project, together
with the promise to be honourably mentioned in the credits
section, seems to be enough incentive for a large number of
programmers to contribute to a project, no matter how small or
large the contribution is. Raymond argues in [Raymond 98b]
that prestige acquired through a contribution to a project is con-
sidered higher in the OS world than monetary beneÞts.

The direction a software project takes depends a great deal on
the suggestions of its user base. Since users have real needs,
this process ensures that a project never steers into the waters
of unneeded functionality.

 

ÒGiven enough eyeballs, all bugs are shallowÓ

 

This statement underlines the importance of having a soft-
ware exposed to as many users as possible, on different plat-
forms, using a variety of operating systems and having a variety
of differing requirements. It states that even the hardest bugs
will eventually be found and corrected (not necessarily by the
same person). The more people use the software, the more bugs
will be found. Having source code available is an advantage
compared to commercial software, as users of the code can not
only detect a bug, but also localize (and possibly Þx) it in the
code.

Even the biggest company in the world cannot match (let
alone afford) the manpower available harnessed by an OS
project, where developers are spread all over the world, using
the Internet for communication and coordination.

 

Advantages

 

In this section, I will summarize some of the beneÞts for
users of OS software, taking Linux as the up to date major
example of an OS project. Linux started as a one-man (Linus
Torvalds) programming project at the University of Helsinki in
1992-93. After releasing a Þrst version of the kernel, more and
more developers joined the effort, and Linux grew gradually
into a full-blown operating system. It seems that nowadays

Linux matches and even exceeds other operating systems in
terms of stability and efÞciency, making it one of the big play-
ers on the server side.

 

Fewer bugs:

 

 a large number of people use the software, there-
fore more bugs will be detected. As source code is available,
developers may even correct a bug they found and send back a
Þx to the authors of the software.

 

Better reliability:

 

 the point above leads to more reliability.
An OS software is typically used in many diverse hardware and
operating system environments, and is therefore tested to its
limits. Linux as an example of OS also seems to be more efÞ-
cient (faster, using less memory) than other commercial oper-
ating systems.

 

No vendor dependence:

 

 OS software is largely developed in
a decentralized way. When the owner of a project stops main-
taining it, someone else will take over from him and continue
the effort. This is in contrast to a vendor going out of business:
in this case a customer may have the right to obtain the source
code, but still needs time and money to maintain it. Another
aspect is that a software can be posted to any platform, without
depending on the vendor to do so.

 

Shorter development cycles:

 

 new features are developed in
less time as compared to commercial projects. Bug Þxes are
sometimes available the day after they were reported. This is
because a new feature or bug Þx is always appealing to at least
one member of the large decentralized development communi-
ty, and hence will be done quickly and unbureaucratically. In
commercial organizations, change requests and bug reports are
ordered according to perceived importance, and consequently
it might take a long time until they are provided.

 

Better support:

 

 the OS community is very helpful in support-
ing users (bug Þxes, addition of new features). A question put
to any of the newsgroups of an OS software is often answered
within hours (for free, without having to purchase a support
contract). However, if this is not enough, people can always
buy commercial support for a certain OS software from a Òsup-
port sellerÓ. Support selling is one way of making money with
OS, and is discussed later.

 

Better conÞgurability and personalization:

 

 as source code is
available, an OS software can always be conÞgured to oneÕs
personal needs by modifying the code. If the modiÞer feels that
others might share this need, he will typically feed the modiÞ-
cation back to the project.

 

Educational beneÞts:

 

 last but not least, having the source
code available allows newcomers in the Þeld to study the
implementation of a software, gaining valuable experience.
There are indications that more and more operating systems
classes taught at universities use Linux. Researchers might
modify Linux to test out new ideas, which would be impossible
using commercial operating systems.

 

Business Models

 

The most important question for a potential provider of
OS is how to earn money with it. I am looking here at the busi-
ness aspect of OS, not at idealistic reasons (for an excellent
treatment of the non-monetary aspects see [Raymond 98b]).

3

4



 

Operating Systems

 

3

 

INFORMATIK ¥ INFORMATIQUE 2/1999

 

The major business models for OS are support sellers, loss
leaders, widget frosting and accessorising [Raymond 98a].

 

Support Seller

 

As the name implies, this model is centred around supporting
OS software. It includes for example selling Linux distribu-
tions (e.g. RedHat, Caldera, SuSe), customizing, training, and
consulting. Even if all the software to setup a Linux box might
be free, it would still be a tedious task to Þnd all the packages
that one wants to install, and make sure that they are compatible
to each other. Services are in high demand; especially commer-
cial organizations care about ÒsolutionsÓ, that is, they prefer
their hardware and software to be installed by the same vendor,
who would also give support, and perform customizing. In a
nutshell: the software itself becomes less important, therefore
give it away for free, and make money on the services.

 

Loss Leader

 

In this model, giving a certain area of the product portfolio
away for free increases the likelihood that the other products
that are only commercially available, will be bought. An exam-
ple is a company that penetrates a market with a free product
(e.g. to become known in a new area), and offers enhanced ver-
sions of it, or entirely different products related to it, for a fee.
Netscape is probably the most prominent loss leader, giving the
Communicator product away for free, and making money from
its NetCenter product. Other examples are Sendmail Inc. (for
Sendmail) and Scriptics (for Tcl/Tk). In these cases the loss of
potential revenue through giving a product away for free is
compensated by sales of other products.

 

Widget Frosting

 

This model applies to hardware (widget) vendors. To
increase sale of hardware, they provide the software for their
hardware for free. This model was heavily used in the days of
the mainframe, where companies like IBM only sold ÒboxesÓ
and did not charge for accompanying software. Even nowa-
days, PCs contain a large number of pre-installed software
packages (usually not increasing the price of the PC), as an
attempt by different PC vendors to gain an advantage over their
competitors to sell their own PCs. The idea behind this is that
software has become a commodity, and can be duplicated many
times (legally or illegally, e.g. pirate software), whereas hard-
ware still has to be purchased by each user separately.

Vendors of peripheral devices, such a graphics cards, net-
work interfaces etc., seem to increase their sales in the Linux
community by providing free device drivers, speciÞcally
tailored to the Linux operating system, and making the speciÞ-
cations public. Especially in the area of peripherals (e.g. graph-
ics cards), providing device drivers for every possible hardware
conÞguration, and ensuring that all cards work in all possible
conÞgurations, is almost impossible. Making the cardÕs speci-
Þcations and drivers open allows to partially move that effort to

the OS community. The advantage is exempliÞed by Linux,
where a lot of peripheral devices are supported. 

 

Accessorising

 

Selling accessories ÒaroundÓ the OS market seems to be a
viable business model too. Accessories could be books, jour-
nals, conferences etc. The companies following this model are
not typically involved in providing OS software themselves,
but build on what is produced by others. However, as for exam-
ple in the case of OÕReilly & Associates, OS developers might
be sponsored by such companies, as the latter indirectly
increase the revenues of the companies.

 

Others

 

There are various other business models of OS, including
some hybrid approaches. Hecker [Hecker 98] gives a good
overview for the interested.

 

Outlook

 

OS has come a long way: initially only used and main-
tained by the academic and research community, it is gaining
acceptance in the commercial world. The rise of the Internet
can be seen as an accelerator of OS: projects can be developed
on a world-wide scale, with developers interconnected through
the Internet and ÒshipmentÓ of software done through the Inter-
net. Additionally, as a working infrastructure, the Internet dem-
onstrates the power of OS, as it is mostly based on free software
(BIND, TCP/IP, Sendmail, Apache etc.).

In the authorÕs opinion, the near-term future of Linux is on
the server side: its reliability and performance are not matched
by other commercial alternatives. An example is the Apache
Web server which has by far the largest share of the Web server
market. In the longer term, the target of Linux is clearly the
desktop. However, to succeed in this area, Linux has to become
more user-friendly, and easier to install. Efforts in this area
include provisioning of more complete and easier-to-install
distributions, and PCs pre-conceived with Linux.

 

References

 

[Brooks 75]
Brooks, Frederick. The Mythical Man-Month: Essays on Soft-
ware Engineering. Addison-Wesley Publishing Co., 1975. ISBN
0201835959

[FSF 99]

 

http://www.fsf.org

 

[Hecker 98]
Hecker, Frank. Setting Up Shop: The Business of Open-Source
Software. 

 

http://people.netscape.com/hecker/setting-up-shop.html

 

[Opensource]

 

http://www.opensource.org

 

[Raymond 98a]
Raymond, Eric. The Cathedral and the Bazaar. 1998. 

 

http://
www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar.html

 

[Raymond 98b]
Raymond, Eric. Homesteading the Noonsphere. 1998. 

 

http://
www.tuxedo.org/~esr/writings/homesteading/homesteading.html

5


